SEARCHING DISTRIBUTED DATA WITH MULTI AGENT SYSTEM

Vishal D. Lipte
Asst. Prof. SRES COE
Kopargaon, Maharashtra vishallipte@yahoo.co.in

Sandip A. Shivarkar
Asst. Prof. SRES COE
Kopargaon, Maharashtra sandip.shivarakar@gmail.com

Ajit A. Muzumdar
Asst. Prof SRES COE
Kopargaon, Maharashtra ajit_muzumdar@yahoo.com

Pravinkumar B. Landge
Asst. Prof. SRES COE
Kopargaon, Maharashtra pravinkumar.landge@gmail.com

ABSTRACT
In distributed systems, to search out information is costly task because they have to be compelled to transfer information from node containing information to the node wherever query is generated, this will consume latency, network traffic etc. For reducing these parameters mobile agents are accustomed fetch information from nodes wherever information resides. Alongside mobile agents directory containing information concerning database kept on completely different nodes is employed to focus retrieval method solely to those nodes that are containing answers to the query. 3 kinds of agents are used to fetch data specifically coordinator, search and local agent.

KEYWORDS
Mobile agents, data retrieval, distributed data, Natural Language Processing.

INTRODUCTION
Traditional Client-Server architecture for distributed data retrieval do not offer much flexibility. There are several steps in client server architecture: set up a connection between client and server, sending request to database servers and receive results from all database servers. But client has to send requests to each database server containing distributed data. With increase in no. of servers no. of requests increase which increase bandwidth consumption. Also heterogeneity of databases affect retrieval. Another approach is to transfer database to a node where request is generated. But this approach also consumes huge amount of bandwidth. Also unnecessary data is transferred over the network. The challenge is retrieving data from distributed databases, usually Heterogeneous, with minimum consumption of network bandwidth. In mobile computing atmosphere, users will access information freelance of their location. But accessing this info shouldn’t prohibit quality of application. From information management purpose of reading data, mobile users will handle solely fraction of information since mobile devices area unit having restricted resources. The invention of low price and nonetheless moveable mobile devices has enabled mobile users to figure from anyplace, anytime. Along with growing technology scores of folks area unit exploiting these devices and through that these area unit accessing distributed information residing on distributed nodes. So there is ought to develop a system that ought to give required information to those mobile devices with a minimum use of resources. These days mobile devices area unit developed to use web. These devices area unit GPRS enabled that provide the simplest way to attach alternative devices to transfer information or to request information. These devices are often wont to access distributed access through GPRS therefore on preserve limited resources of those mobile devices. The devices area unit preserved by exploitation mobile agents. By this technology all the computations are performed at the nodes themselves. Mobile agent technology is used as a useful and efficient tool for searching and retrieving data in distributed environment where the data is stored at a various nodes of the system. A mobile agent is an executing program that
can migrate during execution from machine to machine in a heterogeneous network.[18]. The advantage of mobile agent is that it searches for info rather than users. Mobile agents carry code of execution or query to be applied on information. They run the query on the information and returns to the node that who had created that agent. This agent carries answer to the query. It is an economical alternative to transfer information and additionally it reduces execution time. Therefore by exploitation of mobile agents we are able to cut back bandwidth needed for operation. during this paper we’ve got urged a query retrieval approach by exploitation directories and multi agent system. The Distributed Information Retrieval task deals with the collection of information from and usually heterogeneous information sources that exist in a distributed environment. One way to address these issues is to use information agents. These Distributed Information Retrieval agents should be able to:

- Ready to serve a request for information from user,
- Convert the request into a code that can be understood by resources,
- determine the knowledge sources that contain information relevant to the request,
- send the request to those sources,
- collect the corresponding results, and methods for returning results.

The remaining part of the paper is organized as follows: Section 2 reviews recent related works. Section 3 introduces to the proposed data retrieval system. Section 4 discusses about expected results from the system. Finally, we conclude the paper in Section 5.

RELATED WORK

With development of distributed applications need for retrieving data from scattered data arise. Many approaches are made for retrieval of distributed data. In [1] the process involving distributed data access from a mobile device, using mobile agents is described. To answer any query in the distributed environment the search is conducted to answer the query only in the databases, which are present in the systems. This approach is useful in situations where required data is scattered on most of the nodes. But in case where data is concentrated to very few nodes. Because unnecessary search agents are sent to the nodes where required data is not present. In [3] the planning issues and implementation details of an entire MAP(Multi Agent Platform) model addresses numerous problems like security mechanisms, fault tolerance, methods for building network-aware mobile agents etc. The MAP system has been has been implemented in Java and optimized for network and systems management applications. In [4] a system supported mobile crawlers which uses mobile agent is planned. The approach implements mobile agents to crawl the pages. Aglet platform [19] is used for implementation of mobile agents. These mobile crawlers or mobile agents that crawl the pages determine the changed pages at the remote web site while not downloading them. But it downloads those pages solely, which have truly been changed since last crawl, therefore it’ll cut back the net traffic and load on the remote web site. Distributed info framework supported mobile agent is planned in [5] which represents agent distribution and also the advancement of agent. The distributed info system is meant and enforced by the employment of agent technology in developing information gathering management application platform of Down Hole Operation Company. Under the IBM Aglet development platform the distributed question system is accomplished supported Mobile Agents, the running results of system shows high pertinence and capability of the model. In [6], Papadimou et al. have suggested the framework for accessing Web-based distributed data For that they have used mobile agents. The suggested system also supports for light-weight, portable, and autonomous clients. Also it is able to operate on slower networks. The implementation of the mobile agents is done by using the aglet platform. The system performs well in wireless and dial-up environments and also for average size transactions. As compared to a client-server platform the proposed system provides a performance improvement of roughly multiples of ten. For the fixed network, the gains are near about 20% and 30%, respectively. In [7] an experimental mobile agent system searching technical reports distributed across multiple machines is proposed. The application was implemented on the DA gents system [20]. It uses statistical information retrieval system called Smart. Smart uses the vector-space model to measure the textual similarity between documents and is wrapped inside a stationary agent on each node. Kawamura et al. [8] have proposed three types of agents to process accessing of data from distributed databases namely direct access, stationery agent access, and mobile agent access. Also, Ismail et al. [9] have analyzed the comparisons between a Java applet-based approach and a mobile agent technology in accessing distributed databases from the Web. It presents a performance evaluation of the mobile agent paradigm in comparison to the client/server paradigm. It is implemented on top of the Java environment, using respectively RMI, the Aglets mobile agents platform and a mobile agents prototype. Menczer [10] designed and implemented My spiders, a multi-agent system for information discovery in the Internet. My spiders is a threaded multivalent system designed for information discovery. It uses an adaptive population of intelligent agents mining the Web online at query time. The usage of mobile agents for information filtering is studied by Thiemann et
al. [11]. It implements mobile agents for filtering distributed information resources and coordinating mobile agent dissemination that minimizes communication costs. Nguyen et al. [12] has developed an agent system that helps information retrieval from the Internet. Their system differs from My spiders because it uses consensus methods for resolving differences in response sets i.e. answers from various nodes and it uses multiple agents like managing agents and search agents for the retrieval task. Tool used for implementation of mobile agents is JADE (Java Agent Development Framework) [13]. JADE is a Framework which is implemented in Java language. It works as a middleware for developing mobile agents. JADE platform follows all guidelines suggested by FIPA (Foundation for Intelligent Physical Agents) [14] specifications. JADE also allows debugging and deployment of mobile agents. FIPA is an IEEE Computer Society standards organization. It works for agent technology and the interoperability with other technologies. In JADE, this platform can be distributed across nodes of the distributed system. Also JADE facilitates mobility of agents from one node to another one when it is necessary. JADE is used as add-on to JAVA. When it is used with Netbeans it should be added to libraries of our project in order to use it.

PROPOSED SYSTEM

3.1 System Architecture

The figure shows proposed system for distributed data retrieval. The architecture shows a multi agent system for retrieving data from distributed databases. We have followed this approach in developing our homogeneous retrieval system for the Database Servers. The overall agent architecture is as follows.

The inter-agent communication is based on standard Query Manipulation Language (QML). The National Language Processing Convert chunks of text from the base station into more formal representations such as first-order logic structures that are easier for computer programs to understand. Our system supports a collection of Database Domains. The concept of database domain is used to describe a logical entity. This entity contains a set of data or databases. Actually it is a logical clustering of distributed database sites. This will make searching easier. Each such site contains search and local agent. The search agent periodically scans through all the database sources, represented by query. These can be domain name or table name of the of various database groups, for example. The search agent traverses through all the local agent (e.g. database belonging to Company or Employee group). It classifies each such domain as referred by query and extracts results from each domain. For example, it will Search all the Employee Information from Employee Domain like Name, Designation, Gender and sends the result back to NLP. The NLP Convert information from computer databases into readable human language. It uses Natural Language Generation (NLG) for generating natural language from a machine representation system such as a knowledge base or a logical form. The converted output can be viewed from mobile unit.
Finally, these important features are passed to the co-coordinator agent. The co-coordinator agent handles the query answering process. It acts as an information gateway to the records sources it manages. In contrast to the above, the user agent is the one that the end user interacts with. It formulates the user’s query, entered via a application, translates into an appropriate query message format and displays the answers. The user agent makes use of the services of a corresponding Co-coordinator agent. This agent accepts requests from user agents. It has the role to identify which database the user is actually referring. Concluding with the overall agent architecture, there are three agents: the co-coordinator agent, the search agent and local agent.

3.2. Mathematical Model

Problem description
Let s be MAS which will process a query such that
s = \{M,B,C,A,L,D\}
where
M is set of mobile phones.
B is set of base stations
C is set of coordinator agents
A is set of search agents
L is set of local agents
D is set of database servers
A = \{a_0, a_1, a_2, a_3\}
M = \{m_0, m_1, \ldots, m_n\}
B = b_0
C = c_0
L = \{l_0, l_1, l_2, l_3\}
D = \{d_0, d_1, d_2, d_3\}

Note:- Since only four distributed databases are considered for implementation so only four elements are considered.

DFA theory
Definition:
A deterministic finite automaton (DFA)
1. A finite set of states (often denoted Q)
2. A finite set S of symbols (alphabet)
3. A transition function that takes as argument a state and symbol and returns a state (often denoted \(d\)) The transition function \(d\) is a function in \(d: Q \times S = Q\)
4. A start state often denoted \(s_0\)
5. A set of final or accepting states (often denoted F)
So a DFA is mathematically represented as a 5-tuple
\((Q, S, d, s_0, F)\)

3.3. Dynamic Programming and Serialization
Proposed system can be divided into two main parts; mobile and stationary. Mobile part includes all mobile agents used in the system. In proposed system search agents are mobile, travelling across network. These agents carry query which is to be fired on database. Stationary part includes local and coordinator agents. Local agents are present at nodes where database resides. These agents accept query from search agent, fire it on the database, collect results and forward these results to search agent. Local agents are well aware of DBMS which is maintaining distributed database. Coordinator agent coordinates retrieval process. Coordinator agent carry out retrieval process by creating search agents, sending them to appropriate nodes and collecting results from those search agents.

3.4. Data independence and Data Flow architecture
As shown in figures, query for data is accepted through mobile device. This query is accepted through simple GUI. The communication between mobile and base station (coordinator machine) is done through GPRS. At base station coordinator agent is present which accepts the Natural language query and converts it to SQL query by using NLP. Then coordinator agent identifies node(s) which are having answers to given query by using a directory. This directory is maintained at base station which contains information about data present in distributed databases. Suppose N no. of nodes are containing answers to given query then coordinator agent creates N no. of search agents.
Each search agent contains a query. Search agents travel through the network and reach their respective nodes. These nodes contain database servers that hold distributed data. Local agents are present at these nodes. Search agents forward their queries to these local agents. Local agents have information about how to retrieve data from their databases and do so after accepting a query from a search agent. The local agent searches for answers to the query, retrieves them, and forwards them to the search agent. The search agent then returns to its originator, i.e., the base station. The same data is accessed by mobile users through their mobile phones as a web page.

![Data flow diagram Level 0](image)

Figure 2: Data flow diagram Level 0

3.5. Multiplexer Logic
The GUI provided to mobile users can be accessed by many mobile users simultaneously because it is developed as JavaServer Pages (JSP). So multiple users can retrieve data simultaneously, independent of each other. For each request, a separate set of agents is created. These agents work independently of each other, finding results independently of each other. Also, inputs are provided independently of each other. To serve each request, a thread of the coordinator is created. Each coordinator thread has its own set of search and local agents. All work without interfering with each other. Different jar files are added to the library of the project so that they can be used by all modules of the project. E.g., fileupload is used for file operations.

Following are the states from which the system transitions, as shown in the figure:

- **Base station (S0):** This is a state of the system when a mobile user is sending a request or getting results. This is the initial and final state of the system.
- **Coordinator agent (S1):** The system will enter this state when the coordinator agent is working, i.e., either creating search agents or collecting results from search agents.
- **Natural Language Processing (S2):** The system will enter in this state when it converts an English query into an SQL command using single-token matching.
- **Search Agent (S3):** SQL query is given to the search agent, it will travel to the node containing the distributed database, then, the system will be in this state. Also, when the local agent provides results to the search agent, the system will enter in this state.
3.6 Turing Machine

- Local Agent(S4): When search agent forwards the query to local agent. Local agent will fire that query on its database. The system will be in this state until it retrieves all records. After collecting all records the system will leave this state when it will forward these results to search agent.

RESULTS AND DISCUSSION
In our project we have implemented NLP approach by using this only specified mobile agents will be activated where in base system or existing system all agents were getting activated for each and every query. So the performance ratio was 1:N where N represents no. of agents. Ratio is no. of queries to no. of activated agents for query. But in proposed system this ratio will be 1:1 so performance is increased by factor (N-1). Because we are sending search agent to only those nodes whose domain matches with the query. In other words query is fired to only those databases which contain answer to query. This system will work best in the databases where we are well aware of what type of data is stored in distributed databases.
In future this system can be improved by working about security of agents, implementing the same concept for homogeneous type of distributed database. Also to work on maintenance of directory about data stored in databases which specifies domain of the databases.

CONCLUSION
In this way we can improve system performance by using mobile agent system and Natural Language Processing. NLP approach will improve system efficiency, reduce system overhead, data congestion and network overhead.

REFERENCES